The Competitiveness of Nations in a Global Knowledge-Based Economy
Ken Kawasaki *
A Cross-Cultural Comparison of
English and Japanese Linguistic Assumptions Influencing Pupil? Learning of
Science
Canadian and International Education, 31 (1)
June 2002,
19-51
Content
Linguistic Mode of Cognition in Science Education |
Abstract nouns are essential for scientific thought. Because the Japanese language has never
contained abstract nouns in contrast to languages in the West and because
people tend to see the world in terms of the language they use, Japanese
science pupils likely develop different science concepts from their
counterparts in Western countries. As a
natural consequence of language-laden cognition, this article proposes a
theoretical framework “linguistic mode of science education” to remind science
educators of varying worldviews in language-culture units. The framework serves science educators in
accomplishing equitable treatment of the Japanese culture where people have a
different worldview from the Western scientific one, and may be applicable to
all non-Western countries, with appropriate linguistic interpretation. The article also describes linguistic features
of Standard Average European languages used in developing scientific thoughts. These fundamental features, contrasted with different
features of the Japanese language, lead to the proposed framework “linguistic
mode of science education.” Awareness by
science educators of linguistic conceptual incommensurabilities
is the first step toward overcoming them. Identifying science education with foreign
language education is the second step.
* Faculty of Education, Kochi University
19
In the past two centuries, linguists, ethnologists and cultural
anthropologists have noticed many people who live by cultural principles
different from Western ones. For
instance, Whorf (1959, p. 57) found that American First Nations (Native
Americans) established forms of time and space of their own; these forms are by
no means identical with those that Western cultures have taken for granted. He understood a language-cognition
relationship, which is known as linguistic relativity: “all observers are not
led by the same physical evidence to the same picture of the universe, unless
their linguistic backgrounds are similar, or can in some way be calibrated”
(Whorf, 1959, p. 214). Since then,
linguistic relativity has been open to dispute; for example, Cole &
Scribner (1974, p. 59) state that their review “makes untenable any strong
version of linguistic relativity.” However,
they also acknowledge that “few would be likely to allow linguistic relativity
no role whatsoever” (Cole & Scribner, 1974, p. 59). They give a moderate illustration of it, a
weak version: “the world is differently experienced and conceived in different
language communities” (Cole and Scribner 1974, p. 41). Thus, people in a specific language-culture
unit share an innate worldview appearing to be objective only to the people
within it.
Consequently, those science educators who have a worldwide perspective
on science education are confronted with different worldviews pupils share
according to their respective languages. Some worldviews may agree with the worldview
of Western modern science, referred to as W-science [1] hereafter, and others may not. If pupils share a different worldview from the
W-scientific one, it is particularly significant for science educators to take
account of a relationship between the W-scientific worldview and the worldview
shared in a linguistic community concerned. Since the community’s worldview disagrees with
the W-scientific worldview, it is highly probable that pupils learn ideas
different from W-scientific ideas taught in the science classroom. In other words, the ideas pupils learn might
not be W-scientific ideas but their cultural counterparts of W-science. This is a typical misunderstanding in science
education conducted in a different language-culture setting.
The present article describes how this is the case for Japanese pupils
instructed in the Japanese language, within which they achieve Japanese
language-laden cognition quite different from that achieved through European
languages. The potential dissimilarity
between
20
Japanese and Western pupils suggests a potential for
conceptual confusion. As the first step
to avoid the confusion, this article also introduces a notion “linguistic mode
of science education” in order to remind science educators of variable
worldviews in language-culture units. This
notion will function as a theoretical framework in science education research,
and will serve science educators in accomplishing equitable treatment of both
the Japanese and the W-scientific worldviews in the science classroom.
The following example will show how the theoretical framework carries
out an educational function in the science classroom. Imagine the question of forming the concept
“acceleration”: Can Japanese and Western pupils share the same concept for
“acceleration?” Clearly, a general
feeling experienced in vehicles is not acceleration in its original sense of
physics, because the feeling is perceived by human senses. Physics has accomplished a formulation of
“acceleration” as mathematical expression so as to separate something
independent of human senses from sensible things. If pupils live by a culture where everything
is understood in connection only with what the senses can perceive, it is
almost impossible for pupils to understand the concept “acceleration.” As I will explain in detail later, Western
pupils are linguistically guaranteed to distinguish between sensible things and
something independent of. human senses. However, the Japanese language does not
guarantee pupils this distinction; in other words, the Japanese language does
not include such terms as refer to something independent of human senses
traditionally. This must cause
language-origin conceptual confusion in Japanese pupils’ mind. The theoretical framework will remind science
educators of conceptual confusion of this type, and will lead them to another
idea of science education in a different language-culture milieu from the
Western one.
In the context of the present comparative study based on the framework
“linguistic mode of science education,” I will focus on a role of abstract
nouns in the English language, one of the languages which has developed
W-science, because the W-scientific worldview consists of abstract nouns and
because the Japanese language does not have definite ways to conceive abstract
nouns traditionally. The case will be
made that this definitely causes language-culture incommensurability that
brings about pupils’ conceptual confusion in science education in Japan. Adducing examples of language-culture
incommensurability, the present article argues that a different type of
knowledge from the W-scientific knowledge may be an object of pupils’ attention
in the science classroom. Even when
science teachers
and their pupils utter a W-scientific term that is by nature
abstract, the term inevitably refers to something concrete in this linguistic
setting. This article will discuss how
to reconcile the contradiction between the two types of knowledge by analysing the linguistic milieu of each linguistic
community.
Linguistic Mode of Cognition in Science Education
If science educators realize the potential for the language-origin
conceptual confusion, they must be interested to investigate how the
W-scientific reality relates to a language and to consider the nature of the
W-scientific reality. The following
gives a general description of the language-cognition relationship:
Man cannot come into direct contact with the elements
composing his world as such. These
elements constitute a world meaningless in itself, one which might aptly be
described as disorderly and chaotic. One
must conclude that the role of language is to bring order to this world and
fashion in it meaningful and controllable objects, properties, and actions.
(Suzuki, 1993, p. 40)
A language functions to articulate things, to formulate relationships
between them and to bring order to this world. In acquiring a specific language, one’s mind
articulates the world and reflects the articulated world at the same time. In learning the first language, a learner’s
mind recognizes reality and shares a cultural worldview by tradition, because
the language is shared. If such a
worldview differs from the W-scientific worldview, science educators have to
make their attitude to science education clear: the attitude to replace the
pupils’ innate worldview with W-scientific worldview (i.e., W-scientism) or to
take both worldviews equitably into consideration in science education (i.e., a
cultural relativism the present article assumes).
Cultural relativism requires science educators to accept two different
worldviews in science education. This is
an issue concerning not objectivity but subjectivity, because the term
“objectivity” implies a single correct worldview in the present context. In order to ensure
22
equitable treatment of both worldviews, science educators
have to grapple with the issue concerning subjectivity. It is de Saussure
who illuminated the role of subjectivity in consideration of objects: He
insisted “far from it being the object that antedates the viewpoint, it would
seem that it is the viewpoint that creates the object” (de Saussure,
1966, p. 8). This characterizes
structural linguistics, which I paraphrased with an emphasis on the systematic
features of created objects by words: A viewpoint creates its own system of
objects (Kawasaki, 1996). The paraphrase
is equivalent to the position that subjectivity creates objectivity, and is a
direct consequence of anti-essentialism (e.g., Burr, 1995, p. 5).
An excellent example of this paraphrase is found in Whorf’s notion
“Standard Average European [2],” (SAE)
conceived when deliberately contrasting European languages with the American
First Nations’ languages. This is a
created object of consideration by his viewpoint, and lumps the following
languages into one group: “English, French, German and other European languages
with the possible (but doubtful) exception of Balto-Slavic and
non-Indo-European” (Whorf, 1959, p. 138). According to his viewpoint which considers SAE
linguistic backgrounds similar to each other, similar worldviews must be
discovered in the West (see Note 2). Then,
a single group of cultures is found in the West, and any difference between
Western cultures is overlooked. Consequently, Whorf’s viewpoint produces a
single cultural group as an object of consideration, Western culture. Therefore, from a non-Western point of view,
it is justified to compare a non-Western culture with Western culture.
For example, in Whorf’s investigation of an American First Nation’s
language (i.e., a non-Western culture), he did not consider differences between
Western cultures as a primary issue. For
the same reason, a Western viewpoint that lumps Chinese, Korean and Japanese
moral philosophies into one group according to Confucianism is justifiable in a
comparative study of a Western moral philosophy with Confucianism. In this comparative study, differences in
moral philosophy between Chinese, Korean and Japanese ones must be less
significant. In another investigation
from a different point of view, when one intends to clarify differences in
moral beliefs between Korea and Japan, the researcher must ignore differences
in moral belief between districts in each country.
In a similar way, a comparative study needs to establish the most
appropriate viewpoint to create a system of objects of consideration,
and the viewpoint always ignores less significant differences
to the comparative study concerned. This
means that a system of objects of consideration depends on a viewpoint: a
viewpoint creates a system of objects. Consequently,
the question “what is this object?” is less significant than another “what viewpoint
does create this system of objects?” in structuralism or anti-essentialism. In other words, the question “what is this
object?’ is objectivity-conscious, and the other question “what viewpoint does
create this system of objects?” is subjectivity-conscious.
The viewpoint the present article has just established is the same as
Whorf did. Focusing on linguistic or
cultural differences between the West and Japan, a non-Western country, I
deliberately pay no attention to differences in culture among Western cultural
units. Furthermore, the Western
worldview seems identical with the W-scientific worldview according to the
viewpoint, because SAE languages have developed both (see below). This viewpoint conceives the Japanese culture
as an object of consideration at the same time, and finds the Japanese language
as a non-SAE language, which has developed the Japanese worldview and the
Japanese system of objects. In the
finding the viewpoint lumps all Japanese regional dialects into a linguistic
group, the Japanese language. Since the
Japanese linguistic articulation is independent of the SAE articulation, the
Japanese worldview definitely shows linguistic or cultural incommensurability
with the W-scientific worldview (Kawasaki, 1996).
Burnet, who is known as the editor of the Burnet Oxford Classical
Texts, asserted in the author’s preface to Early Greek Philosophy:
My aim has been to show that a new thing came into the
world with the early Ionian teachers - the thing we call science - and that
they first pointed the way which Europe has followed ever since, so that, as I
have said elsewhere, it is an adequate description of science to say that it is
“thinking about the world in the Greek way.” That is why science has never existed except
among peoples who have come under the influence of Greece. (Burnet, 1975, p. v)
This is much more crucial to science education in the non-West than
Western people can imagine, because those who live by non-
24
Western
cultures cannot relate their tradition to the Greco-Roman civilization. To learn “thinking about the world in the
Greek way” means that non-Western people who learn W-science have to alienate
themselves from their non-Western cultures.
By contrast, Western people need not alienate themselves from the
Greco-Roman civilization. It is typical
that Snell (1960, p. 227) identified the West as the linear successor to the
legacy of the Greco-Roman civilization. He
pointed out that the essence of the W-scientific premises correlated with the
maturity in the use of definite and indefinite articles in the Ancient Greek
language. His identifying differentiates
the West from the non-West. Therefore, Snell’s viewpoint to create the two worlds as an
object-system of consideration is similar to that which Kawasaki (1996)
established on the basis of the notion “SAE.” Snell (1960, p. 228) argued that the definite
article in the Ancient Greek language had become “a seed for the growth of
scientific concepts.”
The article is capable of making a substantive out of
an adjective or a verb; and these substantivations,
in the field of philosophy and science, serve as the stable objects of our
thinking. But the substantives formed in
this way do not refer to the same order of things as ordinary concrete nouns;
ordinary material things are not the same as the objects of thought created by
these substantivations. (Snell, 1960, p. 229)
The definite article in the Ancient Greek language made it possible to
form the abstract nouns whose referents were beyond the phenomenal, material or
tangible world (i.e., in the world of Idea, to use the Platonic term).
Although today’s English system of articles is greatly simplified, the
definite article “the” can play the same role as Snell pointed out. In front of the singular form of a countable
noun, for instance, “the” can make a general statement about all things of a
particular type: “The computer allows us to deal with a lot of data very
quickly.” In this example, the compound
“the computer” refers to “the Idea of computer,” not concretely to actual
computers in the phenomenal world. In
the same way, when “the” is placed in front of an adjective, the compound
refers its Idea corresponding to everyone or everything that can be described
by the adjective: “the true, the good and the
beautiful.” The
compound “the true” refers to something that everything true shares: the Idea
of truth.
These compounds do not refer to anything particular in the phenomenal
world. Their referents ought to be found
in the world of Idea according to the distinction between the world of Idea and
the phenomenal world. In this manner,
the English language has formulated methods for conceiving abstract nouns that
do not refer to anything in the phenomenal world. Then, whoever uses an
English noun has to decide which world its referent belongs to, though
he or she seems to make the decision sub-consciously. This linguistic decision leads
English-speaking people to conceive the two opposite notions: “the phenomenal
world” and “the world of Idea,” between which Plato drew the fundamental
distinction (Boar, 1973b, p. 347).
Conversely, owing to this fundamental distinction, Western people have
clarified whether an object of consideration belongs to the phenomenal world or
to the world of Idea where everything is universal and eternal. The reason why W-science is believed to be
universal is the belief that W-scientists strive to search the world of Idea
for the W-scientific reality. Therefore,
every W-scientific explanation assumes the form that W-scientific phenomena are
explained in terms of abstract things or things in the world of Idea. This can be paraphrased as the following
general form of explanation: Every explanation demands a system of assumptions
or describes “what exists in terms of what ought to exist” (Boar, 1973a, p.
547). W-science fundamentally requires
abstract nouns in order to describe “what ought to exist” in the world of Idea.
The Japanese Language Mode of Science Education
In contrast to this SAE linguistic function by which abstract nouns are
generated, “the Japanese language does not have any fully established method of
composing abstract nouns,” nor has it an “established method of turning
adjectives into corresponding abstract nouns” (Nakamura, 1993, p. 533). As a matter of fact, the Japanese language has
never contained articles that perform the same function as in the English
language. This means that the Japanese
culture has never developed the dichotomy between “the world of Idea” and “the
phenomenal world.” Therefore, the
Japanese culture does not conceive the notion similar to “the world of Idea.” I have to stress that the lack
26
of the abstract-making function is by no means a linguistic
flaw of the Japanese language. This must
be understood as a characteristic of the Japanese language in a cross-cultural
perspective.
Instead of conceiving the world of Idea, Japanese thought places
exclusive emphasis on the phenomenal world, as Nakamura (1993) describes:
[W]e should notice that the Japanese are willing to
accept the phenomenal world as Absolute because of their disposition to lay a
greater emphasis upon intuitive sensible concrete events, rather than upon
universals. This way of thinking with
emphasis upon the fluid, arresting character of observed events regards the
phenomenal world itself as Absolute and rejects the recognition of anything
existing over the phenomenal world. (p. 350)
A typical example of language-culture incommensurability must be
realized. In this English expression the
term “Absolute” is a Japanese counterpart of “the supernatural” in the Western
culture, but “Absolute” thus appears as neither universal nor immutable in the
context of the Japanese culture.
The expression “particular and mutable Absolute” agrees linguistically
with the point that no Japanese term refers to things beyond the phenomenal
world, but, to Western people, it might appear as a contradiction in terms,
e.g., the mortal God. In the Japanese
culture, the notion “particular and mutable Absolute” can refer to “what ought
to exist.” According to this linguistic
characteristic, for instance, Ekken, a distinguished
Japanese Confucianist in the early eighteenth
century, “did not understand the distinction between the realms ‘above form’
and ‘below form’,” nor was he “inclined to recognize the realm which transcends
and underlies the natural world of the senses” (Nakamura, 1993, pp. 541-542). In this sense, “Absolute” plays a similar
role to that of “reality” in Western thinking; however, Western people must
experience a feeling of incompatibility because of its fluid nature. Western people’s sense of incompatibility
stems from the difference in linguistic features between the English and
Japanese languages, because these languages differently formulate “what ought
to exist.”
In science education, since the notion “what ought to exist” builds up
pupils’ background of knowledge, science educators should take notice of the
linguistic diversity in worldview. A
difference must arise in what pupils search for in the phenomenal world between
the West and Japan. In the West,
abstract nouns induce pupils to search the world of Idea for something
universal and immutable. Whereas in Japan pupils search the phenomenal world for “Absolute”
according to the Japanese worldview. In order to distinguish between these
linguistic settings for science education from the viewpoint of abstract noun,
I proposed the notion “linguistic mode of science education” (Kawasaki, 1999):
the English language mode of science education, the SAE-language modes of it,
the Japanese language mode of it, etc. I
expect that these different modes will remind science educators of the
different linguistic settings for science education. Hereafter, “the Japanese language mode of
science education” is abbreviated to “the JLSE.” Generally, non-SAE-language modes of science
education may induce linguistic conceptual conflicts the same as the JLSE.
In order to clarify the essence of the JLSE, it is significant to
inquire about the notion “ways of thinking” from the linguistic viewpoint. According to Nakamura (1993):
The phrase “ways of thinking” refers to any
individual’s thinking in which the characteristic features of the thinking
habits of the culture to which he belongs are revealed. “Ways of thinking” as here used will designate
especially ways of thinking about concrete, empirical questions, which may, on
many occasions, involve also value-judgements and
question of values in ethics, religion, aesthetics, and other such human
concerns. The thinker need not himself
be aware of any way of thinking when he is engaged in operation of thinking...
(p. 5)
In addition to the foregoing, Nakamura (1993, p. 5) argues: “In
studying the ways of thinking of a people, we find one of the first clues in
their language.” As I have just
revealed, the notion “what ought to exist” is associated with whether a
language contains the method to formulate abstract nouns, and then establishes
a. reference frame according to which people are “engaged in operation of
thinking.” W-
28
science is regarded as one example of ways of thinking
because abstract nouns are needed in W-scientific explanations. Thus, an investigation of “what ought to
exist” clarifies differences between the W-scientific way of thinking and the
Japanese way of thinking.
At the same time, Nakamura (1993, p. 5) elucidates two notions: “rules of logic” and “system
of thought.” On one hand, “rules of
logic” are those explicitly expressed formal rules put forward by logicians: Typically
they are the laws of identity, contradiction and the excluded middle. Since those similar “rules of logic” are found
universally, they appear to be independent of cultures. Thus, “rules of logic” do not purport to
describe how people think. On the other
hand, a “system of thought” is a coherent, self-conscious system of thought
that sprang from one or more of several ways of thinking. Since W-science is a coherent system of
thought, the “W-scientific system of thought” seems to be more acceptable than
the “W-scientific way of thinking.” However,
the present article chooses the “W-scientific way of thinking” in order to give
an emphasis to W-scientific premises of which science educators are usually
unaware.
Regardless of the differences in ways of thinking, science educators in
Japan teach the W-scientific content in the setting provided by the Japanese
language. Consequently, science
educators with the W-scientific worldview might be perplexed with the Japanese
way of thinking in pupils, because the Japanese way of thinking has been
developed without abstract nouns. In the
West, on the contrary, science educators find that the Western way or SAE way
of thinking shares abstract nouns or concepts with the W-scientific way of
thinking. Thus, the SAE modes of science
education agree with the W-scientific content about abstract nouns. For this reason, the language-culture setting
for science education in Japan must be distinguished from that in the West
(Ogata & Kawasaki, 1988). Ogawa
(1998, p. 148) makes such a distinction by using the term “Japanized
science education.”
Science educators are inclined to overlook a historical fact that
characterizes the Western way of thinking. As Moor (1972) pointed out in the
“Introduction” to Movements of Thought in the Nineteenth Century written
by Mead (1972), the Western way of thinking stems from medieval theology (i.e.,
Christian theology):
The rationalism which colors European thought since
1600, and which pervades our contemporary scientific period through the
assumption of the knowability of nature, of the
uniformity of nature, and, consequently of the universality of natural laws, is
rooted in medieval theology. Picturing
the universe as carrying out the purpose of a divine, rational being, any
irrational element was excluded automatically, since God not only was
intelligent but had the power to make his intelligence effective. From this source come the rationalistic
characteristics of modern science. Galileo,
Copernicus, Kepler, and Newton, to mention only four,
applied mathematics to the universe with an almost naïve trust. Mathematics, the most rational of our
disciplines, would fit a rational world. (Moor, 1972, p. xii)
Since 1600,
Christian theology has been incorporated into the W-scientific system of
premises to which W-science always refers.
Combining the Platonic Ideas with Christian faith, Western philosophy
developed the role of things beyond the phenomenal world:
In Saint Augustine the Platonic ideas became ideas in
the mind of God, ideas in accordance with which He had created the world. In the Wisdom of Solomon (11: 20) one reads,
“... Thou hast ordered all things by measure and number and weight,” a verse
which during the Middle Ages was understood to be the basis of all physical
science. But measure and number and
weight were mathematical ideas and since Neo-Platonism was highly colored with Pythagoreanism, it became almost a rule to identify the
ideas on the mind of God with the mathematical ideas. (Boas, l973a, p. 546)
In this context, the Platonic Ideas are: “it [the world] must have been
constructed on the pattern of what is apprehensible by reason and understanding
and eternally unchanging; from which again it follows that the world is a
likeness of something else” (Plato, 1977, p. 41). W-science gives descriptions of what happens
in the world of Idea,
30
because “Nature was an embodiment of the divine wisdom”
(Boss, 1973a, p. 546), the divine wisdom which conceived the Platonic Ideas. In addition to this, there is another dominant
feature in the tradition of Western philosophy: “change is to be lamented and
the Sage will reject the mutable in his search for the permanent” (Boas, 1973b,
p. 347).
These features formulate what W-scientific knowledge ought to be. W-scientific laws are believed to assume
mathematical forms, because mathematics represents the immutable. Since anything immutable is found only beyond
the phenomenal world, W-science essentially describes what happens in the world
of Idea in terms of abstract nouns or concepts (i.e., Ideas). Boas (1973a, p. 543) summarized the properties
of Ideas as follows: “they are universals, class-characters, analogous to
mathematical figures; they are timeless and unchanging; they are ideals, not
existent objects in space-time; they are known only to the reason.” These properties aptly illustrate the role of
abstract nouns or concepts as “what ought to exist” in the W-scientific way of
thinking. Thus, only abstract concepts
can describe W-scientific knowledge: a knowledge system accessible only by
reason.
Throughout the history of Western philosophy, Western people tend to
discredit what is known only by sense organs. In The Republic (Plato, 1987), for
instance, Socrates says:
The stars that decorate the sky, though we rightly
regard them as the finest and most perfect of visible things, are far inferior,
just because they are visible, to the true realities; that is, to the true
relative velocities, in pure numbers and perfect figures, of the orbits and
what they carry in them, which are perceptible to reason and thought but not
visible to the eye. (pp. 277-278)
There is a clear distinction between what is known only by sense organs
and what is known by reason; the former is inferior to the latter. Obviously, this distinction agrees with that
between the phenomenal world and the world of Idea.
Realizing two types of what is known (i.e., by sense organs and by
reason), Western philosophy fostered the belief that knowledge is of two sorts:
“one immediate, sensory, direct grasping of that which is known, and the other
mediated, ‘intellectual,’ inferential” (Boas, 1973a,
p. 542). In terms of the two sorts of knowledge, Plato
explains how to approach the world of Idea:
…
it proceeds from consideration of species backwards to recognition of the
genus, and then from general back to higher entities still, so far as reason
can go, until by the agency of intuition there may come, in final stage, a
sudden flash of understanding, with the recognition of the Idea of the Good
itself, the final ultimate premise on which the meaning and validity of all our
assumptions depend. Knowledge of this
ultimate Idea will make possible a reverse process, a logical synthesis,
showing how conclusions follow naturally upon one another. (Bluck,
1949, p. 90)
Clearly, this explains how to conduct the W-scientific investigation. First, what is known by sense organs must be
accumulated. However, one should not
rely on them, because the knowledge of reality “exists elsewhere than in the
realm of sense” (Bluck, 1949, p. 118). Then, the W-scientific investigation demands
the “inferential” type of knowledge: what is known by reason. Finally, only after sufficient logical
examinations convert what is known by sense organs into what is known by reason, one can approach the world of Idea by the agency of
intuition. In this way of thinking, one
can understand W-scientific realities, and then find W-scientific laws which
these realities follow in the world of Idea. In W-scientific investigations, the first step
appears to be identical to the final one, because:
The notion that ideas can be apprehended by a kind of
vision or intuition, by looking and seeing them, has never been lost in
Occidental philosophy, for knowing as a kind of insight, illumination,
revelation, has almost always been retained. (Boas, 1973a, p. 542)
However similar the first and the final steps are, sufficient reasoning
at the second step is essential to arriving at the final step.
Since Plato did not lay down explicit criteria by which the thinker can
judge his or her endeavour at each step to be
sufficient, the
32
relationship between these three steps has been a critical
issue in the philosophy of W-science. The criteria for taking the succeeding steps
seem to be rather arbitrary. In
particular, since the criterion for the final step is to be fulfilled by “a
sudden flash of understanding,” no one can know the goal of his or her
reasoning beforehand. For instance,
Popper offers a modern paraphrase of “a sudden flash of understanding:”
The advance of science is not due to the fact that
more and more perceptual experiences accumulate in the course of time. Nor is it due to the fact
that we are making ever better use of our senses. Out of uninterpreted
sense-experiences science cannot be distilled, no matter how industriously we
gather and sort them. Bold ideas,
unjustified anticipations, and speculative thought, are our only means for
interpreting nature: our only organon, our only
instrument, for grasping her. (Popper, 1980, p. 280)
The reason why “bold ideas, unjustified anticipations, and speculative
thought” play a key role is that the role of intuition is beyond the rational
sphere of intelligence. Many science
educators overlook this irrational and unjustified activity in W-science; they
tend to confine every W-scientific activity to the rational sphere of
intelligence. However, the role of
intuition can be described rationally in principle even though intuition as
such is irrational.
In order to understand the W-scientific procedure, science educators
have to pay attention to the philosophy of W-science; it is a series of
inquiries into the arbitrariness in the criteria as Popper has done. For instance, the new philosophy of W-science
insists that the first step is contingent on the second: a “theory-laden”
understanding (Hanson, 1958, p. 19). For
another instance, Poincaré (1952, p. 141) implies
that “science is built up of facts, as a house is built up of stones; but an
accumulation of facts is no more a science than a heap of stones is a house.” Since he assumes a blueprint for the house,
his words accord closely with the essence of “theory-laden” understanding. If Poincaré had
noticed the new philosophy of science, he would have suggested in addition to
the house-metaphor as follows: Before gathering the stones, an architect has to
complete the planning for the house. Definitely, the facts obtained from
experiments are already organized and codified by reason to a certain extent. Poincaré (1952, pp.
142-143) went further as follows: “we are not restricted to our experiment, we
correct it.” This is exactly the same
stance as Plato
adopted. It is “the agency of intuition” that makes the
correction to the experimental facts. When
conducting W-scientific experiments, scientists bridge the gap between these
two realms according to the Western cultural tradition that Plato established.
In fact, those who are familiar innately with Western
ways of thinking can bridge the gap in their subconsciousness,
because the thinker need not be aware of it when engaged in thinking. This leap into the world of Idea has never
been explained in the philosophy of W-science.
Just why value was associated with the
timeless and immutable has never been explained, if indeed any explanation of
it is possible. The association seems to
be spontaneous and it is probable that value and duration form a couple which
seems to many men to require no explanation. (Boas,
1973b, p. 347)
In other words, this association is internalized, and
remains unchanged throughout the history of Western intelligence. Therefore, anyone unfamiliar with a Western
way of thinking (i.e., non-Western people who are not brought up in Western
cultures) must be perplexed with this “agency,” “correction” or “leap.”
Owing to the internalized spontaneous association,
confusion occasionally arises about the correction to the experimental results
even in the realm of Western intelligence. For instance, Broad and Wade (1982) express
their conviction of deceit in Betrayers of the Truth. In the second chapter entitled “Deceit in
History,” they state: “The great scientists of the past were not all so honest
and they did not always obtain the experimental results they reported” (p. 22).
However, all the cases they examine in
the second chapter of the book, from Ptolemy to Millikan,
can be qualified as proper for the W-scientific way of thinking. For example, even though Millikan
might make corrections to his experimental data by “trimming” and “cooking”
(Broad & Wade, 1982, pp. 29-30), his procedure is justifiable as essential
in the W-scientific way of thinking according to Poincaré’s
indication cited before: “we are not restricted to our experiment, we correct it.”
In his procedure, Millikan’s
reason leapt from the phenomenal world to the world of Idea to reveal the
W-scientific reality by means of “bold ideas, unjustified anticipations, and
speculative thought” as Popper points out. Millikan must be a
witness to the revelation that “the sky and the earth are married together, and
the divine mysteries impressed upon the land
34
are discovered” (Debus, 1978, p. 120). This is not anachronistic though the quotation
from Debus is about chemical philosophy in the Renaissance. Millikan seems to
have shared the same attitude to reality as alchemists in the Renaissance. This is the mainstream of the W-scientific way
of thinking inaccessible to non-Western people.
Of course, the notion of knowledge does change in the history of
Western philosophy. As von Glasersfeld (1995, p. 7) indicates, the current notion of
knowledge is dissimilar to that in the Renaissance: “The most important is that
the customary conception of truth as the correct representation of
states or events of an external world is replaced by the notion of validity.” This very shift from “truth” to
“validity” is the notion generated from the Western point of view. It is clear that “truth” implied something
related to the Creator in the Renaissance. “Validity” still retains the similar
relationship to the Creator, because only sound reasoning can justify
“validity.” Both terms hold “reasoning”
in high regard; the two terms, “the Creator” and “reasoning,” are significant
members in logos-associated relations [3]
(Kawasaki, 1996).
Thus, from the viewpoint of the non-West, the W-scientific way of
thinking has a highly respected and sound reasoning throughout the Western
history of intelligence; it is the legitimate successor to the Greco-Roman ways
of thinking. Insofar as the W-scientific
way of thinking legitimizes mathematical forms to describe W-scientific
phenomena, it associates, as the result of Western people’s subconsciousness,
essentially with the Biblical phrase: “Thou hast ordered all things by measure
and number and weight.” Regardless of
linguistic, cultural or religious setting for science education, science
educators practically assume the shape of Christian faith in association with
the world of Idea; they are subconsciously led to this assumption accepting the
universality of W-science uncritically.
Since Japanese nouns are basically concrete as stated above, they can
not correctly refer to the W-scientific concepts which are essentially
abstract, for instance, acceleration, a point mass, a rigid body, an ideal gas,
etc. Owing to lack of such abstract
nouns, the Japanese people are apt to consider that “what is the case” is
identical with “what appears to be so” because abstract nouns are required for
describing “what appears to be so.” In
other words, the Japanese way of
thinking does not seem to show a tendency to establish the
dichotomy between “what is the case” and “what appears to be so.” This may lead the Japanese pupils to confuse
results obtained from experiments (i.e., “what is the care”) with W-scientific
truths described by W-scientific laws consisting of abstract nouns (i.e., “what
appears to be so”). This must be a
fundamental issue that needs to be discussed in science education research from
a cross-cultural viewpoint. In the
Japanese language setting for science education, pupils might be led not to
search for abstract concepts in the world of Idea but to inquire into the
phenomenal world.
A fundamental character of the Japanese way of thinking may become more
comprehensible to Western people if they are aware that Japanese people
essentially discredit what is expressed in words [4].
This devaluing of words is identical to the devaluing of logical reasoning or of
discussing reality which is known only by reason. For instance, Zen school, a school of Japanized Buddhism, assiduously cultivated this attitude
against words.
A word is a finger that points at the moon. The goal of Zen pupils is the moon itself, not
the pointing finger. Zen masters,
therefore, will never stop cursing words and letters. (Shigematsu,
1981, p. 3)
Similarly, they repeatedly insisted: “Once you preach, the point is
gone” (Shigemalsu, 1981, p. 83). Instead of valuing logical reasoning, Zen masters
placed confidence in what was known directly by their sense organs. In this way of thinking, the masters hate
abstract nouns for their thinking. They
think their thoughts only within the phenomenal and concrete world. Hence, the Japanese way of thinking gives a
clear contrast to the Western way of thinking by discrediting logical reasoning
and confining their thoughts to the phenomenal world. These characteristics closely relate to the
linguistic point that the Japanese language has never formulated the way to
conceive abstract concepts.
Furthermore, in studying Buddhahood, some
religious persons refused to use any logical reasoning. In other words, they deliberately chose not to
embrace logical reasoning in their search for Buddhahood,
because the phenomenal world was “Absolute” and because it is the Japanese
counterpart of “the supernatural” as stated above. Shinran, a Buddhist
monk of Pure Land school of Japanized Buddhism in the
thirteenth century, wrote about “jinen,” which
is expressed by the same
36
two kanji characters as “shizen.”
This Japanese term is significant to the
JLSE, because it considers this term equivalent to the English term “nature”
(Kawasaki, 1996). Since kanji characters
are basically ideographs, the difference in pronunciation is of little
significance.
“Ji” means “of itself’ - not
through the practicer’s calculation. It signifies being made so. “Nen” means “to be
made so” - it is not through the practicer’s
calculation; it is through the working of Tathagata’s
Vow… Jinen signifies being made so from the very
beginning. Amida’s
Vow is, from the very beginning, designed to bring each of us to entrust
ourselves to it - saying “Namu-amida butsu” - and to receive us into the Pure Land; none of this
is through our calculation. Thus, there
is no room for the practicer to be concerned about
being good or bad. This is the meaning
of jinen as I have been taught. (Shinran,
1977, p. 530)
On the belief that everyone had already obtained salvation by Amida’s Vow, Japanese people accepted a feature of “jinen” or “shizen” in the
Japanese way of thinking as follows: Japanese people were inclined to avoid
reasoning about “jinen” or “shizen” logically, simply because conducting such an act
indicated distrust of Amida’s Vow.
The philosophy of Dogen, a great Japanese Zen
master in the thirteenth century, shows an excellent example of confining
thoughts to the phenomenal world. He
found Buddhahood in impermanence there. “Impermanence is the Buddhahood”
is the doctrine upheld by Dogen:
The impermanence of grass, trees and forests is verily
the Buddhahood. The impermanence of the person’s body and mind
is verily the Buddhahood. The impermanence of the (land) country and
scenery is verily the Buddhahood. (Nakamura, 1993, p.
352)
Dogen identified the Buddhahood
with the impermanence of “grass, trees and forest,” “the person’s body and
mind” and “the (land) country and scenery.” Since Buddhahood is
identical to “Absolute,” Japanese people believe it to be already revealed as
impermanence in the realm of senses. Nakamura (1993, p. 352) concludes: “there is
nothing that is not exposed to us.” Taking for granted that “there is
nothing that is not exposed to us,” Japanese people have
explained the world in terms of concrete nouns or concepts. From this point of view, both abstract
concepts and the world of Idea are clumsy and unnecessary. Japanese philosophers have never rejected the
mutable in their search for “Absolute.”
Owing to this linguistic setting, the JLSE leads pupils to produce
misunderstandings about W-scientific concepts, because all things that the JLSE
pupils refer to exist only within the phenomenal world according to the
characteristic of the Japanese language that has never coined “the world of
Idea.” Translation of W-scientific terms
into the Japanese language is the root of pupils’ misunderstandings. The translation has already woven W-scientific
terms pupils use into the Japanese language. Therefore, it is impossibly difficult for
science teachers to realize the language-culture incommensurability that lies
between “nature” and its Japanese equivalent “shizen”
(Kawasaki, 1996), for example. Since
science education is conducted in the Japanese language, the translation
conceals language-culture incommensurability in the science classroom.
It is true that “shizen” usually
shares some referents with the English term “nature.” For example, they are “grass, trees and
forest,” “the person’s body and mind” and “the (land) country and scenery.” This is the reason that “shizen” is picked up as an equivalent of “nature,” but
Kawasaki (1996) proved by examining English translations of Japanese literature
that “shizen” refers to “one’s natural self’ and
“conscience” in addition to these examples I have just given. Furthermore, in the Japanese language, “shizen” refers even to something supernatural
(Kawasaki, 1996), because “Absolute” does exist in their concrete aspect of
sensibility showing itself in the fluid nature of them. Since “shizen” connotes
“Absolute,” it may be an ethical model which one must accept, not an object of
studying, examining or scrutinizing (Kawasaki, 1990). Kawasaki, Hujimura
and Kawahara (1999) reveal such an attitude toward “shizen,”
not “nature,” in data from a research questionnaire responded to by Japanese
high school pupils. The result implies
that they assume the linguistic, cultural or traditional thought about “shizen:” They consider “shizen”
to be a model they must follow. This
philosophical connotation of the term is the very reflection of the Japanese
way of thinking.
Hence, it is extremely difficult for pupils who have such a view on “shizen” to understand the function of W-scientific laws
of conservation (e.g., the conservation law of energy or mass) because
38
these laws are obtained through searching the immutability
for the world of Idea. “Shizen” is by nature mutable and the Japanese
counterpart of “a natural phenomenon” is also mutable. Then, “what appears to be so” is mutable for
the Japanese language-culture reason that the world of Idea is never
presupposed. Therefore, following the
Japanese way of thinking, the JLSE subconsciously emphasizes the agency of
intuition throughout an investigation of the phenomenal world. When pupils look closer at a Japanese
counterpart of “a natural phenomenon,” the Japanese term “kansatsu” leads them to an intuition for feeling
empathy with their objects concerned (Kawasaki, 1999). Surprisingly, the JLSE considers this attitude
as equivalent to the English term “to observe,” and consequently the JLSE pupils
refuse to objectify W-scientific objects (Kawasaki 1992). Ogawa (1998, p. 156) focused on the objectives
of the JLSE: “pupils are to learn by direct interaction with Shizen, feel Shizen,
feel empathy with Shizen, and to
love Shizen.” These goals
result in oppressing pupils’ objective reasoning throughout their activity in
science lessons.
This means that the JLSE pupils assume a subject-object relationship
different from that assumed in the W-scientific way of thinking (Kawasaki,
1999). Since the JLSE pupils do not have
their deliberate intention to find something universal and immutable beyond the
phenomenal world, they are led to feel empathy with their objects in accordance
with the JLSE objectives as pointed out in the foregoing. When the JLSE pupils observe biological
objects, in particular, the JLSE science teachers emphasize this attitude
toward the objects. The JLSE science
teachers envisage pupils’ merging with their objects mentally and feeling
empathy even with physical and chemical objects eventually (Kawasaki, 1992). This is the Japanese cultural articulation of
an attitude toward “shizen,” the Japanese
equivalent of “nature.” Thus,
irrespective of the context of the W-scientific way of thinking, “experiments”
and “observations” are conducted in the JLSE.
Consequently, the JLSE considerably alters the significance of
“experiment” in the science classroom. The
Japanese term “jikken,” the equivalent of
“experiment,” may not be the bridge between the phenomenal world and the world
of Idea, because the world of Idea is never conceived in the JLSE pupils’ mind.
Examining the pupils’ activity “jikken” in
the science classroom of the fourth grade of primary school, Nakayama and Iwakiri (1999) suggest that pupils try to give a full
description of diversity of a W-scientific phenomenon they are really faced
with, not to confirm their conclusion asserting ideals or universals according
to the W-scientific way of thinking. The
JLSE
39
pupils’ stance on learning must stem from the philosophy of Ogyu Sorai, a Japanese Confucianist in the early eighteenth century. Nakamura
(1993) points out:
learning consists, to him [Ogyu], in
knowing as many particular things as possible: “Learning consists in widening
one’s information, absorbing extensively anything and everything one comes
upon.” (p. 537)
This is the same attitude toward the phenomenal world as the JLSE
pupils assume: They prefer to amass knowledge of particular facts that exist in
the phenomenal world (Nakayama & Iwakiri, 1999). The JLSE pupils’ attitude toward experiment is
in the tradition of the Japanese culture rather than W-science.
For the sake of contrast, the JLSE pupils are inclined to stop their
objective reasoning after “jikken” whereas
pupils in SAE modes of science education start their objective reasoning after
“experiment.” The JLSE pupils’ attitude
toward natural phenomena agrees exactly with the following tendency in the
Japanese belief system: “Among the Japanese, however, there is a strong
tendency to understand such a universal law only in reference to some
particular or specific phase of things” (Nakamura, 1993, p. 395). Both universal laws and the things from which
universal laws are derived are considered by Japanese people to be in the same
realm of knowledge (i.e., knowledge about the phenomenal world).
All the characteristics of the JLSE I have described are attributable
to the fact that the Japanese language traditionally contains no abstract nouns
or concepts of which the world of Idea consists. A point needs stressing here: only the
cross-cultural viewpoint formed by the present article can adduce these
examples. All of them might appear as
evidence in favour of the significance of the JLSE;
however, these examples neither establish nor strengthen the viewpoint in the
strict sense of anti-essentialism. It is
the viewpoint that reveals the examples because they are characteristics of
objects created by the viewpoint (Kawasaki, 1996). As a rule, to give an account of a viewpoint
just established is an essential procedure for making examples meaningful in
cross-cultural studies. Again I have to
emphasize that issues concerning viewpoint are not of objectivity but of
subjectivity.
Most modes of science education, irrespective of its linguistic setting,
aim to teach the W-scientific content produced by the W-scientific way of
thinking. In the JLSE, however, the lack
of abstract nouns could make a Japanese science classroom incommensurate with a
Western science classroom. Even when the
JLSE teacher uses the same teaching materials as an English science teacher,
what is taught differs linguistically (i.e., cognitively). The same educational situation must take place
in non-SAE-linguistic modes of science education.
In order to improve this linguistic situation in the JLSE, science
educators have to be aware that the W-scientific content is inseparable from
the notion “the world of Idea” and that this inseparability stems from the
linguistic and religious backgrounds of Western culture. Science educators’ awareness of it might lead
the JLSE to encounter religious backgrounds where Christian religious values
challenge Japanese values. In a
practical way, the JLSE has resolved this dilemma by emphasizing the
technological usefulness of W-science: the technological aspect of W-science. W-science appears to be universal in this
aspect, because every machine works in the same way throughout the world. However, this emphasis on the technological aspect
leads science educators to fail to notice that W-science has its innate way of
recognizing the outside world. It
creates and articulates the W-scientific system of objects according to the
W-scientific way of thinking. In this
sense, W-science functions as a language commensurable and compatible with SAE
languages.
Thus, W-science has a recognizing aspect in the same way that every
human language has its recognizing aspect to create its system of objects and
perceive them. The recognizing aspect of
W-science is developed linguistically, culturally and religiously as discussed
above. In order to illuminate the
recognizing aspect of W-science, I proposed the separation of W-science into
the recognizing and technological aspects in science education research
(Kawasaki, 1996). Within the framework
of this dichotomy between the two aspects, science educators can naturally
accept that the recognizing aspect of W-science does depend linguistically on
Western culture.
Then, from the present cross-cultural viewpoint that this article has
just offered, difference in the recognizing aspect between W-science as an SAE
language and the Japanese language becomes a contemporary issue not only in the
JLSE but also in other non-SAE-linguistic modes
of science education, because similar language-culture
settings for science education must be provided in the non-West. There, investigation of the difference
in the recognizing aspect will find dissimilarities in a non-Western way of
thinking. In contrast with the W-scientific
way of thinking, the Japanese way of thinking might appear to lack the
reasoning step before the leap into the world of Idea. For a culturally equitable study of the JLSE,
however, science educators should remember that the Japanese way of thinking is
neither incoherent nor inferior to the Western way of thinking. This simply shows a variety of ways of
thinking. On the basis of what is known
by sense organs, the Japanese way of thinking leads Japanese people of
intelligence to search the phenomenal world for “Absolute.” At this step, “kansatsu,”
the Japanese type of intuition, is educationally required. The JLSE has uncritically replaced “to
observe” by the Japanese term “kansatsu,” of
which a possible English equivalent is “to contemplate” (Kawasaki, 1999).
This means that the JLSE encourages pupils “to contemplate” their
objects in the science classroom in harmony with pupils’ feeling empathy with
their objects as discussed above. In the
context of the Japanese language, the term “kansatsu”
conforms to the Japanese system of objects. This “kansasu” activity
might be similar to the final step in bridging the gap between the phenomenal
world and the world of Idea in the Western way of thinking. However, “kansatsu” is accomplished only within
the phenomenal world as discussed above. According to the W-scientific way of thinking,
the world of Idea must be supposed in the activity “to observe.” The reason why science educators in the JLSE
pay no attention to this linguistic incommensurability is that the Japanese
concepts “shizen” and “kansatsu”
are believed to be equivalent to the W-scientific concepts “nature” and “to
observe,” respectively. As Kawasaki
(1999) revealed, “shizen” is contemplated in
the activity “kansatsu.” Therefore, in
this translation, the JLSE unwittingly revises the phrase “to observe a natural
phenomenon concerned” into “to contemplate a natural phenomenon in which
‘Absolute’ might be found.”
In an investigation of the JLSE, science educators’ lack of awareness
of linguistic diversity needs to be discussed. Owing to this attitude toward “shizen,” what
pupils find deviates noticeably from what the W-scientific way of thinking expects. As stated
above, the research questionnaire (Kawasaki, Hujimura
& Kawahara, 1999) shows that they consider “shizen”
to be an ethical model they must follow rather than an object to examine
and control. The JLSE pupils are
42
inclined to assume not the Western attitude toward “nature”
but the traditional attitude toward “shizen” in harmony with the philosophy
of Tao Te Ching, which “is a fundamental text
in the development of culture and thought in China and East Asia”. (Izutsu, 2001, p. 9)
Man models himself on earth.
Earth models itself on heaven.
Heaven models itself on the Way.
And the Way models itself on (its own) spontaneity
[shizen].
(Izutsu,
2001, p. 73)
Since the term “spontaneity” should be identified with “shizen” in the foregoing, it is reasonable that the
JLSE pupils consider “shizen” to be an ethical
model they must follow.
The reason why this deviation in meaning takes place is the collocation
characterized by the language that pupils use. As a rule, an object can follow limited
transitive verbs in sensible and reasonable sentences; for instance, the
sentence “I write a picture” must sound odd to English-speaking people. The verb “to write” is distinguished from “to
draw” in the English language even if the same pencil is used on the same sheet
of paper. The word “picture” is seldom
combined with “to write” in a usual sequence in the English language. In the same way, the Japanese word “shizen,” (i.e., the Japanese equivalent of “nature”)
does not form a collocation of a Japanese verb equivalent to the English verb
“to observe” (i.e., the activity of objectifying and watching carefully). In the context of W-science, the word “nature”
follows the verb “to observe” of course. Such linguistic combinations of nouns and
verbs fundamentally figure out a way of thinking in a linguistic community.
By using the notion “syncagmatic relations,”
Culler explains this linguistic fact in general as follows: “Syntagmatic relations define combinatory possibilities: the
relations between elements which might combine in a sequence” (Culler, 1988,
48). Obviously, syntagmatic
relations formed in a language are no longer available to any other languages. Therefore, a difference in syntagmatic
relations essentially causes language-culture incommensurability. Then, the difference between the syntagmatic relations “nature” and “shizen”
formed in the respective languages explains the incommensurability between
the two words, the incommensurability which I explained from the difference in
associated relations formed around these words (Kawasaki, 1996). This is another way to explain this
incommensurability, and the two
ways are closely interrelated. Thus, the difference in syntagmatic
relations plays a critical role not only in translation but also in pupils’
cognition in the JLSE, and consideration of the difference must lead science
educators to a mirror argument on the Japanese culture in the JLSE. By making pupils aware of this linguistic
difference in cognition, science educators may greatly improve the linguistic
setting for the JLSE.
To distinguish between language-culture settings for science education
will lead science educators to conceive the notion “language-laden cognition.” This is basically similar to the notion
“theory-laden observation” in the new philosophy of science. Hanson (1958, p. 19) drew science
philosophers’ attention to “theory-laden understanding.” Adducing the case where an observer sees a
physicist measuring electrical resistance, Brown (1979, p. 83) explained, “it
is more important for the moment to note that irrespective of what the
scientist is ‘really’ doing, what we learn by observing him is not determined
solely by what he is doing but also depends on what the observer already
knows.” In this context, what the
observer already knows is not restricted to the W-scientific knowledge the
observer has already acquired. Brown
(1979, p. 83) argues, “if our knowledge and beliefs play a central role in
determining what we perceive, then the scientific theories that a scientist
holds should play the same sort of role in determining what he observes in the
course of his research.” Therefore,
since what the observer already knows is associated with everything that he or
she has linguistically internalized, the notion of “theory-laden observation”
is derived from “language-laden cognition.” Hence, the notion “language-laden cognition”
has a wider spectrum than “theory-laden observation.”
Consequently, “language-laden cognition” is applicable to science
education research from a culturally equitable point of view. It is also highly beneficial to science
educators who intend to improve the linguistic situation for pupils. Science educators who conceive the notion
“language-laden cognition” will understand that two types of knowledge must be
taken into account in science classrooms in Japan: the knowledge built up in
the world of Idea and the other knowledge built up in the phenomenal world. After becoming cognizant of both types of knowledge,
science educators will be able to relativize the W-scientific
worldview to the Japanese inherent worldview. Then, they will distinguish the English mode
of science education from the JLSE. Conversely,
this may lead them to relativize other linguistic
modes of science education, thus assuming a cross-cultural perspective.
44
Recently, the International Association for the Evaluation of
Educational Achievement carried out (TIMSS), the Third International
Mathematics and Science Study, mainly in 1994. According to the TIMSS report [5], Japan is a member of the highest scoring
group, as in the previous two studies. Many
science educators familiar with the TIMSS report might wonder and doubt that
the JLSE has such trouble in conducting science education. Their doubt pointedly illustrates the problem
this article has just raised. The JLSE
pupils’ higher score in the TIMSS report does not necessarily mean that they
have become practiced in learning the W-scientific way of thinking, because
“rules of logic” play a critical role in mathematics and science tests. As pointed in the foregoing, “rules of logic”
appear to be independent of various ways of thinking. Pupils can achieve a higher score if they skillfully
understand how “rules of logic” operate.
However, those pupils who consider “shizen”
to be a model they must follow (Kawasaki, Hujimura
& Kawahara, 1999) encounter difficulties in understanding W-science under
the present complicated circumstances of the JLSE: 1) their understanding of “shizen” is not identical to the English language mode
of science education pupils’ understanding of “nature” but 2) the JLSE pupils
are under the impression that their understanding is shared throughout the
world. These
difficulties which translation creates and conceals have no relation to
their TIMSS score as stated above. The
point to which the present article intends to draw science educators’ attention
is that the JLSE pupils as well as teachers unwittingly substitute the
W-scientific worldview for the Japanese cultural worldview. Consequently, the JLSE pupils cannot avoid the
conflict between these two worldviews (Kawasaki, 1990), a conflict which may
cause pupils’ cultural identity crisis.
In the science classroom, the JLSE pupils must understand the content
in a much different way, due to the following three closely interrelated
linguistic factors I have focused on: linguistic relativity, cultural premises
expressed as “what ought to exist,” and language-laden cognition, all of which
are issues concerning pupils’ viewpoint (i.e., pupils’ subjectivity). Linguistic relativity results in the
differences in worldviews; a worldview determines corresponding cultural
premises as “what ought to exist.” Conversely,
the cultural premises legitimize the worldview. Furthermore, the cultural premises formulate
the way to discover “what ought to exist,” which in turn determines
what is to be discovered. What is finally discovered is the result of
language-laden cognition. According to
this cognitive procedure, the JLSE pupils interpret the W-scientific knowledge
as something about the phenomenal world, though the W-scientific knowledge
essentially expresses what happens in the world of Idea. The JLSE pupils can neither establish their
traditional worldview which their language-culture unit expects them to share
nor clarify the relationship between the W-scientific and the Japanese
traditional worldviews in the JLSE. This
may lead the JLSE pupils to their identity crisis of culture.
In order to circumvent this crisis, Japanese science education could be
taught through the English language; consequently, pupils would avoid changing
their language-culture identity in science education conducted in such a way. However, Japanese pupils must meet another
problem of acquiring the English language. For handling this dilemma, I proposed a
strategy: to identify science education with foreign language education
(Kawasaki, 1996). This does not mean that
science education should be taught through the English language, but expects
science educators to take consideration of the fact that W-science is described
in a language incommensurate with the Japanese language. Science educators must be led to take pupils’,
as well as science educators’, language-laden cognition into consideration. In foreign language education, pupils are not
confused by learning cultural values embedded in the foreign language, though
they always come up against linguistic incommensurability. Foreign language educators achieve this by
emphasizing that the foreign language is incommensurate with pupils’ first
language. Definitely, foreign language
education does not aim to replace pupils’ first language by the foreign
language concerned. Hence, the notion
“language-laden cognition” makes it possible to conduct science education
without pupils losing their language-culture identity.
Taking account of language-laden cognition, I would like to suggest a
new principal objective of the JLSE: to have pupils gain experience in carrying
out the English language-laden cognition. Even in the JLSE, this objective must
encourage pupils to study W-science with a critical mind, on the basis of which
they will develop language-culture relativism. However, this relativism will become blurred
owing to the universality of technology when science education intends to
support society by attempting to industrialize it. This is the reason that I separated W-science
into two aspects: the recognizing aspect and the technological aspect that
links directly to the global economy. The
role of “inspiration” in the technological aspect is more comprehensible
46
than that of “intuition” in the recognizing aspect, because
every mechanism exists and appears to be universal in the phenomenal world. In spite of this disunion, the
language-culture relativism and the universality of technology are compatible
in science education if science educators are always aware of the recognizing
aspect of W-science.
With the aid of the awareness of the recognizing aspect, the notion
“language-laden cognition” will deepen science educators’ understanding of what
pupils already know, and what and how pupils will learn through their
linguistic activity. Such understanding
presents an essential prerequisite for a constructivist approach that focuses
on personal frameworks of understanding (Hodson,
1998, p. 51). Since the personal frameworks of
understanding are subordinate to their linguistic or cultural framework, the
understanding of language-laden cognition will guide the constructivist
approach. These two types of frameworks,
personal and linguistic (i.e., cultural), are complementary and must be
distinguished from each other. The
constructivist approach will guide science educators’ investigation into
personal frameworks of understanding. At
the same time, researchers should investigate the linguistic framework from a
similar viewpoint to that of this article. This requires science educators to make a
clear distinction between the linguistic or cultural relativism and another
type of relativism concerning individuals.
The perspective kept throughout this article might be clarified further
by comparing it to Kuhn’s (1970, pp. 160-173) perspective. It is true that Kuhnianism
has accomplished relativization of W-science in a
historic perspective, but it takes no account of non-Western worldviews:
non-Western types of subjectivity. Excluding
non-Western worldviews, Kuhnianism seems to argue
that W-science is universal. The present
viewpoint is not the same as Kuhnianism holds. This article has described what W-science
preserves throughout the Western history of intelligence whereas Kuhnianism focuses on how it has changed. My objective is relativizing
W-science in a cross-cultural perspective: relativizing
W-science from the viewpoint of science education in non-Western countries. Then, Kuhnianism is
less significant to this article. The
relationship between Kuhnianism and the present
stance on the relativization of W-science will be
discussed elsewhere from the viewpoint of anti-essentialism.
I am grateful to Professor Glen Aikenhead for
his encouraging me to complete this work with helpful suggestions in the
CLAGS-STEP Project: International Joint Research on Culture, Language and
Gender Sensitive Science Teacher Education Programme
funded by a Grant-in-Aid for Scientific Research (No. 12308006) from the
Japanese Ministry of Education, Science, Sports and Culture. I would like to thank other members of this
project, Professors Dale Baker, Pauline Chinn, Narishige
Inagaki, Tetsuo Isozaki, Olugbemiro
Jegede, Hayashi Nakayama, Tomoyuki
Nogami, Masakata Ogawa
(Principal Investigator), Hisashi Otsuji,
Kate Scantlebury, Svein Sjoberg, Manabu Sumida and Togo Tsukahara,
for valuable discussions in the Kobe Meeting.
1. The term “W-science” is an abbreviation for
“Western ethno-science” that refers to Western Modern science, and causes an
enumeration a list of ethno-sciences namely, the Japanese ethnoscience,
the Javanese ethno-science, etc., as Kawasaki (1996) discussed. By means of calling Western Modern science
“Western ethno-science,” this article cautiously gives neither educational nor
social privilege to W-science.
2. This article relates “SAE” to the notion “the West.”
The West is an area where people use SAE
languages as their first language. Furthermore,
the concept “Western” relates to an individual’s linguistic identity. When the individual’s first language is an SAE
language, from the viewpoint of cognitive form, this article regards him or her
as Western.
3. Associated relations are a cloud of words formed
around a pivotal word in a specific language. One conducts one’s thoughts and actions
according to the cloud. Therefore, to
form associated relations is a cause to link the language closely with features
of the corresponding culture. In the
main, whoever conducts reasoning in an SAE language follow logos-associated
relations: the God, the Creator, reason, ratio, creature, nature etc. Obviously, non-SAE-speaking people do not form
these associated relations innately. Kawasaki
(1996) gives the detailed explanation of this notion.
48
4. It is highly probable that the Eastern
cultures may share a similar cultural tendency against words. For simplicity, I restrict this article only
to the Japanese culture.
5. The author referred to the TIMSS report included in the following: National
Institute for Educational Policy Research (1997). Chuugakkono Sugakukyouiku
Rikakyouiku no Kokusaihikaku
(The International Association for the Evaluation of Educational Achievement).
Tokyo: Toyokan (in Japanese).
Bluck, R. S. (1949). Plato’s life and
thought. London: Routledge and Kegan Paul.
Boas, O. (1973a). Idea In P. P. Wiener (ed. in Chief), Dictionary of the history
of ideas: Volume II (pp. 542-549). New York: Charles Scribner’s Sons.
Boas, G. (1973b). Nature. In P. P. Wiener (ed. in Chief), Dictionary of the
history of ideas: Volume III (pp. 346-351). New York: Charles Scribner’s
Sons.
Broad,
W., & Wade, N. (1982). Betrayers of the truth. New York: Simon and
Schuster.
Brown, H. I. (1979). Perception, theory and commitment (Phoenix edition).
Chicago: The University of Chicago Press.
Burner,
J. (1975). Early
Greek philosophy (Fourth Edition). London: Adam and Charles Black.
Burr, Vivien. (1995). An introduction to social constructivism. London
and New York: Routledge.
Cole, M.,
& Scribner, S. (1974). Culture
and thought. New York: John Wiley and Sons.
Culler,
J. (1988). Saussure.
London: Fontana.
Debus, A.
G. (1978). Man and nature in the
renaissance. Cambridge: Cambridge University Press.
de Saussure, F. (1966). Course
in general linguistics (Translated by W. Baskin). New York: McGraw-Hill.
Hanson, N. R. (1958). Patterns of discovery. London: Cambridge University
Press.
Hodson, D. (1998). Teaching and learning
science. Buckingham: Open University Press.
Izutsu, T. (2001).
Lao-tzu - The way and its virtue. Tokyo: Keio University Press.
Kawasaki, K. (1990). A hidden conflict between Western and traditional concepts of
nature in science education in Japan. The Bulletin of School of
Education Okayama University, 83, 203-214.
Kawasaki, K. (1992). An
epistemological study on “kansatsu” believed to be a
precise equivalent for “observation.” Nihon Rika Kyouiku Gakkai Kenkyu Kiyo (Bulletin of Society of Japan Science
Teaching), 33(1), 71-80 (in Japanese).
Kawasaki, K. (1996). The concepts of science in Japanese and Western education. Science
& Education, 5(1), 1-20.
Kawasaki, K. (1999). A deductive description of cultural diversity of “observation”.
Journal of Science Education in Japan, 23(4), 258-270.
Kawasaki,
K., Hujimura, S., Kawahara, N. (1999). The Japanese
view of “nature” formed in a book metaphor for “shizen”.
Kagakukyouiku Kenkyu (Journal of Science Education in Japan), 23(1), 42-49 (in Japanese).
Kuhn, T.
(1970). The
structure of scientific revolutions (Second Edition, Enlarged).
Chicago: University of Chicago Press.
Mead, G. H. (1972). Movements of thought in the nineteenth century. Chicago:
University of Chicago Press.
Moor, M. H. (1972). Introduction. In G. H. Mead (Author), Movements
of thought in the nineteenth century (pp. xi-xxxvii). Chicago: University
of Chicago Press.
Nakamura, H. (1993). Ways
of thinking of Eastern peoples (Paperback edition). Honolulu: University of
Hawaii Press.
Nakayama, H., & Iwakiri, S. (1999). Science-Learning Based on Pupils’
Experiment Following Their Own Prospects of Assumption.
Proceedings
of the 49th Annual Meeting of Society of Japan Science Teaching, 285-288
(in Japanese).
Ogata,
A., & Kawasaki, K. (1988). An idea of science education in Japan as the country of non-Western
culture. Nihon Rika Kyouiku
Gakkai Kenkyu Kiyo (Bulletin of Society of Japan Science Teaching),
28(3), 55-6 1 (in Japanese).
Ogawa, M.
(1998). A cultural history of
science education in Japan: an epic description. In W. W. Cobern
(Ed.), Socio-cultural perspectives on science education (pp. 139-161).
Dordrecht: Kluwer Academic
Publishers.
Plato. (1977). Timaeus and Critias (Translated
by D. Lee). London: Penguin Books.
Plato. (1987).
The Republic (Translated by D. Lee). London: Penguin Books.
Poincaré, H. (1952). Science and
hypothesis. New York: Dover.
50
Popper, K. R. (1980). The logic of scientific discovery. London: Routledge.
Shigematsu, S. (1981).
Zen forest. New York: Weatherhill.
Shinran. (1977). The collected work of Shinran:
Vol.1 (Translated by D. Hirota). Kyoto: Jodo Shinshuu Honganji-ha.
Snell, B. (1960). The discovery of the mind (Translated by T. O. Rosenmeyer). New York: Harper and Row.
Suzuki,
T. (1993). Words
in context (Translated by A. Miura). Tokyo: Kodansha International.
von Glasersfeld, E. (1995). A Constructivist approach to teaching. In L. P. Steffe
& J. Gale (Eds.), Constructivism in education (pp. 3-15).
Hillsdale: Lawrence Erlbaum Associates.
Whorf, B. L. (1959). Language, thought, and reality. New York: John
Wiley and Sons.
51